Updated News Around the World

An ultralow power artificial synapse for next-generation AI systems

Illustration of the device structure of the phase-change artificial synapse. The heater and alternate electrodes correspond to the post-synaptic and pre-synaptic neurons, respectively. Credit: SUTD

Brain-inspired computing is a promising candidate for next-generation computing technologies. Developing next-generation advanced artificial intelligence (AI) systems that can be as energy-efficient, lightweight, and adaptable as the human brain has attracted significant interest.

“However, mimicking the brain’s neuroplasticity, which is the ability to change a neural network connection, in traditional artificial synapses using ultralow energy is extremely challenging.” said Desmond Loke, assistant professor at the Singapore University of Technology and Design (SUTD).

An artificial synapse—comprising a gap across two neurons to allow electrical signals to pass and communicate with each other—can emulate the efficient neural signal transmission and memory formation process of the brain.

To improve energy efficiency of the artificial synapse, Loke’s research team has introduced a nanoscale deposit-only-metal-electrode fabrication process for artificial synapse for the first time. By using deposit-only nanopillar-based germanium-antimony-telluride memristive devices, the team designed a phase-change artificial synaptic device which has achieved an all-time-low energy consumption of 1.8 pJ per pair-pulse-based synaptic event. This is about 82% smaller compared to traditional artificial synapses.

“The experiments have demonstrated that the artificial synapse based on phase-change materials could perform pair-pulse facilitation/depression, long-term potentiation/depression and spike timing dependent plasticity with ultralow energies. We believe our finding can provide a promising approach for developing faster, larger scale artificial synapse arrays with significantly improved performance in AI tasks.” said Loke.

Traditional heater electrodes formed by the deposited and etched process can cause/create a large degree of damage at the interfaces. Alternatively, the heater electrodes created by a deposit-only process in this study could create a smaller degree of damage at the interface. This may lead to a more robust, defect-free interface with substantially decreased contact resistance and its variations, consequently resulting in decreased operating current.

This research was published in APL Materials. The team members from SUTD also include Shao-Xiang Go and Natasa Bajalovic. Other collaborating researchers are from the University of Cambridge.

Development of dendritic-network-implementable artificial neurofiber transistors

More information:
Shao Xiang Go et al, A fast, low-energy multi-state phase-change artificial synapse based on uniform partial-state transitions, APL Materials (2021). DOI: 10.1063/5.0056656

Provided by
Singapore University of Technology and Design

An ultralow power artificial synapse for next-generation AI systems (2021, September 27)
retrieved 27 September 2021
from https://techxplore.com/news/2021-09-ultralow-power-artificial-synapse-next-generation.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsUpdate is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.