Updated News Around the World

Improving machine learning for materials design

Improving machine learning for materials design
Graphical abstract. Credit: DOI: 10.1080/27660400.2021.1963641

A new approach can train a machine learning model to predict the properties of a material using only data obtained through simple measurements, saving time and money compared with those currently used. It was designed by researchers at Japan’s National Institute for Materials Science (NIMS), Asahi KASEI Corporation, Mitsubishi Chemical Corporation, Mitsui Chemicals, and Sumitomo Chemical Co and reported in the journal Science and Technology of Advanced Materials: Methods.

“Machine learning is a powerful tool for predicting the composition of elements and process needed to fabricate a material with specific properties,” explains Ryo Tamura, a senior researcher at NIMS who specializes in the field of materials informatics.

A tremendous amount of data is usually needed to train machine learning models for this purpose. Two kinds of data are used. Controllable descriptors are data that can be chosen without making a material, such as the chemical elements and processes used to synthesize it. But uncontrollable descriptors, like X-ray diffraction data, can only be obtained by making the material and conducting experiments on it.

“We developed an effective experimental design method to more accurately predict material properties using descriptors that cannot be controlled,” says Tamura.

The approach involves the examination of a dataset of controllable descriptors to choose the best material with the target properties to use for improving the model’s accuracy. In this case, the scientists interrogated a database of 75 types of polypropylenes to select a candidate with specific mechanical properties.

They then selected the material and extracted some of its uncontrollable descriptors, for example, its X-ray diffraction data and mechanical properties.

This data was added to the present dataset to better train a machine learning model employing special algorithms to predict a material’s properties using only uncontrollable descriptors.

“Our experimental design can be used to predict difficult-to-measure experimental data using easy-to-measure data, accelerating our ability to design new materials or to repurpose already known ones, while reducing the costs,” says Tamura. The prediction method can also help improve understanding of how a material’s structure affects specific properties.

The team is currently working on further optimizing their approach in collaboration with chemical manufacturers in Japan.


Using AI to predict new materials with desired properties


More information:
Ryo Tamura et al, Experimental design for the highly accurate prediction of material properties using descriptors obtained by measurement, Science and Technology of Advanced Materials: Methods (2021). DOI: 10.1080/27660400.2021.1963641

Provided by
National Institute for Materials Science


Citation:
Improving machine learning for materials design (2021, September 30)
retrieved 30 September 2021
from https://techxplore.com/news/2021-09-machine-materials.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsUpdate is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.