Updated News Around the World

Researchers develop capsule X-ray dosimeter for real-time radiotherapy monitoring

Researchers develop capsule X-ray dosimeter for real-time radiotherapy monitoring
Functional model of capsule. Credit: SIAT

In radiotherapy, precision in targeting tumor tissue while minimizing damage to healthy tissue is crucial. Monitoring the dose of radiation delivered and absorbed in real-time, particularly in the gastrointestinal tract, poses significant difficulty. Additionally, existing methods used for monitoring biochemical indicators such as pH and temperature are inadequate for comprehensive evaluation of radiotherapy.

To address this challenge, a joint research team from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences, the National University of Singapore (NUS), and Tsinghua University has developed a capsule-shaped swallowable X-ray dosimeter (with a diameter of 5 mm and thickness of 0.2 mm), which can estimate radiation dose based on radioluminescence and temperature using a neural network-based regression model.

The researchers found that the dosimeter was approximately five times more accurate than standard methods for dose determination.

The study was published in Nature Biomedical Engineering.

In vivo clinical dosimeters such as metal-oxide-semiconductor field-effect transistors, thermoluminescence sensors, and optically excited films are commonly placed directly on or near the patient’s skin to estimate the dose absorbed in the target area.

Although in vivo dosimetry with electronic portal imaging devices has been explored for treatment verification, it can be expensive and subject to photon attenuation that can alter the dose to the patient.

Researchers develop capsule X-ray dosimeter for real-time radiotherapy monitoring
Separate component model of capsule. Credit: SIAT

The capsule dosimeter is composed of a flexible optical fiber encapsulated with X-ray persistent nanoscintillators, a polyaniline film, and a wireless miniaturized luminescence readout system.

With the capability of measuring pH and temperature, it can evaluate the absorbed dose during radiotherapy for gastric cancer and can be used to monitor treatment for different malignancies with further optimization of the capsule’s size.






Exploded 3D view of the capsule dosimeter. Credit: Nature Biomedical Engineering (2023). DOI: 10.1038/s41551-023-01024-2

“In the future, this capsule could be placed in the rectum for prostate cancer brachytherapy or in the upper nasal cavity for real-time measurement of the absorbed dose in nasopharyngeal carcinoma, minimizing radiation damage to surrounding structures,” said Prof. Sheng Zonghai, one of the corresponding authors.

More information:
Bo Hou et al, A swallowable X-ray dosimeter for the real-time monitoring of radiotherapy, Nature Biomedical Engineering (2023). DOI: 10.1038/s41551-023-01024-2

Provided by
Chinese Academy of Sciences


Citation:
Researchers develop capsule X-ray dosimeter for real-time radiotherapy monitoring (2023, April 14)
retrieved 14 April 2023
from https://techxplore.com/news/2023-04-capsule-x-ray-dosimeter-real-time-radiotherapy.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsUpdate is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.