Updated News Around the World

Solid-state processing of surplus aluminum alloy powders

Solid-state processing of surplus aluminium alloy powders
Credit: University of Sheffield

A project led by Dr. Simon Graham, research associate, EPSRC MAPP—Future Manufacturing Hub, combines field assisted sintering technology (FAST) with hot rolling to convert surplus aluminum alloy powders from atomization into sheet material in two solid-state steps.

Metal additive manufacturing (AM) techniques typically operate using powders with limited particle size ranges. In the atomization process (where the melted metal alloys are first refined and degassed, then poured into a gas nozzle, where the liquid material is disintegrated into metal powder by a high-pressure gas stream), significant amounts of particles are produced outside of these ranges. This results in an accumulation of out-of-size specification metal powders without a clear use case, in addition to many other sintering methods having been found to be ineffective in the consolidation of aluminum powders.

AM techniques are generally promoted as having reduced material wastage compared to conventional metallurgy, where extensive machining waste is generated, but the as-atomized particle size range is often overlooked as an issue. Business economics requires that alternative processes are utilized to convert these surplus powders into useful products, to ensure that the AM market is cost effective and meets sustainability targets. This key factor informs the foundation of this research.

Field assisted sintering technology can provide an alternative solid-state processing route to consolidate these surplus powders into billets for subsequent processing. This enables the production of useful products from this feedstock, whilst also improving sustainability within the AM supply chain.

This project goes a step further, in combining FAST with hot rolling, to convert surplus aluminum alloy powders from atomisation into sheet material in two solid-state steps. FAST can effectively consolidate the powder into fully dense billets, which are then hot rolled into sheets.

Through tensile testing, the results revealed that the properties’ output from this process were comparable to conventional material which is used in aerospace applications.

Pre-existing research, focused on FAST of metal powders, has assisted in the development of this project. This spurred a final year student project designed by Dr. Graham and led by Alicia Patel, BEng Aerospace Engineering student, who assisted in the practical work in the early-stage development of research direction prior to defining this project. Following the completion of this early-stage research, the project has been built upon with a more streamlined direction, which was led by Dr. Simon Graham.

Solid-state processing of surplus aluminium alloy powders
Credit: University of Sheffield

The works have also been informed by works carried out in Sheffield, relating to the processing of titanium powders which are oversized for laser powder bed fusion, where methods of crossover were identified to be of relevance. When reviewing existing literature, only one paper has been published which specializes on hot rolled, FAST produced, pure aluminum. Previously published research on A20X alloy has only considered AM or cast material.

It has been shown that FAST can rapidly consolidate aluminum alloy powders, including A20X, with a large particle size range into fully dense materials. The resulting 80mm diameter A20X FAST were also successfully hot rolled from their initial 15mm thickness down to 2mm sheet, although some later optimization is required to prevent edge defects within the sheet.

Some conventional cast A20X material—with the same starting dimensions—were also hot rolled under the same conditions. Tensile testing showed that—before and after the heat treatment—the FAST material exhibited similar properties to the cast and were comparable to other aluminum sheet used in aerospace applications.

These findings were presented by Dr. Simon Graham at WorldPM 2022 Conference in a keynote titled “Solid-State Processing of Surplus Aluminum Alloy Powders through a Combination of Field Assisted Sintering Technology and Hot Rolling.”

The results were a promising step in creating high performance sheet material from surplus aluminum alloy powders, with some further optimization and scale up required.

The outcome of this project has demonstrated that there is a viable processing route to convert surplus alloy powders into sheet material with good mechanical properties. Although the long-term, positive, impacts cannot be quantified at this stage, there are clear economic impacts. These economic benefits relate to new revenue streams for atomizers, as well as a potential cost reduction of powders for AM.

The next steps involve completing further rolling trials, to optimize the processing, and produce higher quality of sheet product. These sheets can also be extended in the starting phases, in a bid to produce larger sheets as an output, which further demonstrates scale up opportunities. Superplastic forming of the sheet material could also be considered to produce near-net shape components.


An alternative low-cost technique to produce metal powders for 3D printing


Provided by
University of Sheffield


Citation:
Solid-state processing of surplus aluminum alloy powders (2022, October 21)
retrieved 21 October 2022
from https://techxplore.com/news/2022-10-solid-state-surplus-aluminum-alloy-powders.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsUpdate is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.